Rank of a matrix

In this section we will deal with both wow vectors and column vectors.

If A is an $m \times n$ matrix, the rows are n-vectors and the columns are m-vectors.

Def: The column space, col A, of A is the subspace of \mathbb{R}^{m} spanned by the columns of A.

The row space, row A, of A is the subspace of \mathbb{R}^{n} spanned by the wows of A.

$$
\text { Ex: If } A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & -1
\end{array}\right]
$$

$$
\operatorname{col} A=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}=\mathbb{R}^{2}
$$

Low $A=\operatorname{span}\{(1,2,1),(0,1,-1)\}$, a 2 -dimensional subspace of \mathbb{R}^{3}, ie. a plane.

Thu: Let A and B be $m \times n$ matrices.
1.) If $A \rightarrow B$ by elementary ww operations, then $\operatorname{row} A=\operatorname{row} B$.
2.) If $A \longrightarrow B$ by elementary column operations, then $\operatorname{col} A=\operatorname{col} B$.

This means, for example, that we can first put a matrix in row-echelon form in order to more easily find a basis for row A :

Ex: $A=\left[\begin{array}{cccc}1 & 1 & 1 & 3 \\ 2 & 0 & 0 & -2 \\ 0 & 2 & 2 & 8\end{array}\right]$.
To find row A, we perform row operations:

$$
\begin{aligned}
A & \rightarrow\left[\begin{array}{rrrr}
1 & 1 & 1 & 3 \\
0 & -2 & -2 & -8 \\
0 & 2 & 2 & 8
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 1 & 1 & 3 \\
0 & -2 & -2 & -8 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 3 \\
0 & 1 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

So a basis for row A is $\{(1,1,1,3),(0,1,1,4)\}$.
We can't use the same strategy to find col A, since we performed wo operations to get to the RE form. However, the RE form tells us which columns of A we need in order to form a basis.
(First, recall that the rank of A is the $\#$ of leading ones in RE form.)

Theorem: Let A be an $m \times n$ matrix of rank r. Then

$$
\operatorname{dim}(\operatorname{col} A)=\operatorname{dim}(\operatorname{row} A)=r . \quad(\text { so } r \leq m, r \leq n)
$$

And if R is a row-echelon matrix such that

$$
A \rightarrow R
$$

by elementary wow operations, them
1.) The r nonzero rows of R are a basis of row A.
2.) If the leading is lie in columns $j_{1}, j_{2}, \ldots, j_{r}$ of R, Then columns j_{1}, \ldots, j_{r} of A are a basis of col A.

Ex: If $A=\left[\begin{array}{cccc}1 & 0 & 3 & -2 \\ 2 & 1 & 2 & -1 \\ 1 & 1 & -1 & 1\end{array}\right]$
we can row reduce and get

$$
\left.\left[\begin{array}{cccr}
1 & 0 & 3 & -2 \\
0 & 1 & -4 & 3 \\
0 & 1 & -4 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 3 & -2 \\
0 & 1 & -4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]\right\} \begin{gathered}
\text { basis for } \\
\operatorname{row}(A)
\end{gathered}
$$

So $\operatorname{rank} A=2$
The nonzero rows $\{(1,0,3,-2),(0,1,-4,3)\}$ are a basis for row (A).

The leading ones are in columns one and two, so a basis for $\operatorname{col}(A)$ is cols 1 and 2 of A (hot of $R R$ matrix). So

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

is a basis for $\operatorname{col}(A)$.

Recall that the image of a matrix A is vectors of the form $A \vec{x}$. We showed that

$$
\operatorname{im}(A)=\text { span of columns of } A
$$

Thus $\operatorname{im}(A)=\operatorname{col}(A)$. Thus, the above gives us a method for finding a basis for in (A), and we know now that

$$
\operatorname{dim}(\operatorname{im}(A))=\operatorname{rank}(A)
$$

Recall that $\operatorname{null}(A)$ is the vectors \vec{x} such that $A \vec{x}=\overrightarrow{0}$. We showed that null (A) is spanned by the basic solutions of $A \vec{x}=\overrightarrow{0}$. Infact, these actually form a basis.

So if A is an $m \times n$ matrix of rank r, there are $n-r$ basis solutions of $A \vec{x}=\overrightarrow{0}$. Thus,

$$
\operatorname{dim}(\operatorname{null}(A))=n-r .
$$

Ex: If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 0 & 2 \\ 0 & -2 & -1 \\ -1 & -2 & -3\end{array}\right]$
We want to find the dimensions of null (A) and $\operatorname{im}(A)$ and bases for each.

First we set up an augmented matrix for $A \vec{x}=\overrightarrow{0}$.

$$
\left[\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
1 & 0 & 2 & 0 \\
0 & -2 & -1 & 0 \\
-1 & -2 & -3 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
0 & -2 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \longrightarrow\left[\begin{array}{lll|l}
1 & 0 & 2 & 0 \\
0 & 1 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So $\operatorname{im}(A)=\operatorname{col}(A)$ has $\operatorname{dim} 2$ and basis

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
-1
\end{array}\right]\left[\begin{array}{c}
2 \\
0 \\
-2 \\
-2
\end{array}\right]\right\} \text {. so } \operatorname{dim}(n u \|(A))=3-2=1
$$

Solving the system: $\quad \begin{aligned} & x+2 z=0 \Rightarrow x=-2 z \\ & y+y z=0 \Rightarrow y=-\frac{1}{2} z\end{aligned}$

$$
y+1 / 2 z=0 \Rightarrow y=\frac{-1}{2} z
$$

Setting $t=z$:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
-1 / 2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
-1 / 2 \\
1
\end{array}\right] \text {, so }\left\{\left[\begin{array}{c}
-2 \\
-1 / 2 \\
1
\end{array}\right]\right\} \text { is }
$$

a basis for nl (A).

We how have a better method for finding the dimension of a subspace:

Ex: $(5.4 .26)$

$$
u=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
5 \\
-6
\end{array}\right],\left[\begin{array}{c}
2 \\
6 \\
-8
\end{array}\right],\left[\begin{array}{c}
3 \\
7 \\
-10
\end{array}\right],\left[\begin{array}{c}
4 \\
8 \\
12
\end{array}\right]\right\}
$$

Set $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ -6 & -8 & -10 & 12\end{array}\right]$ Then $U=\operatorname{col}(A)$

$$
\begin{aligned}
& \longrightarrow\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -4 & -8 & -12 \\
0 & 4 & 8 & 36
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{rrrr}
1 & 2 & 3 & 0 \\
0 & -4 & -8 & -16 \\
0 & 0 & 0 & 24
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
0 & 1 & 2 & 4 \\
0 & 0 & 0 & 1 \\
\uparrow & \uparrow & \uparrow
\end{array}\right]
\end{aligned}
$$

columns $1,2,4$ of A form a basis

$$
\operatorname{dim}(U)=\operatorname{rank}(A)=3
$$

basis for $u=\left\{\left[\begin{array}{c}1 \\ 5 \\ -6\end{array}\right],\left[\begin{array}{c}2 \\ 6 \\ -8\end{array}\right],\left[\begin{array}{c}4 \\ 8 \\ 12\end{array}\right]\right\}$

To summarize: If A is an $m \times n$ matrix, and $R=\underset{\text { of } A}{R E}$
$\operatorname{col}(A)=$ span of cols of A (subspace of \mathbb{R}^{m})

- $\operatorname{dim}(\operatorname{col}(A))=\operatorname{rank}(A)$
- To find a basis: columns of A, corresponding to leading ones in R.
$\operatorname{im}(A)=$ vectors in \mathbb{R}^{m} of form $A \vec{x}$.
- $\operatorname{im}(A)=\operatorname{col}(A)$
row $(A)=$ span of wows of A (subspace of \mathbb{R}^{n})
- $\operatorname{dim}(\operatorname{row}(A))=\operatorname{rank}(A)$
- basis = nonzero hows of R
$\operatorname{null}(A)=$ solutions to $A \vec{x}=\overrightarrow{0}$ (subspace of \mathbb{R}^{h})
- $\operatorname{dim}(\operatorname{null}(A))=n-\operatorname{rank}(A)$
= \# of non leading variables in R.
- basis = basic solutions of $A \vec{x}=\overrightarrow{0}$

Practice problems: $5.4: 1,2,3,7$

